Copied to
clipboard

G = C23.9Dic6order 192 = 26·3

7th non-split extension by C23 of Dic6 acting via Dic6/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.9Dic6, M4(2).1Dic3, C24.6(C2×C4), (C2×C8).76D6, C4.87(C2×D12), C12.22(C4⋊C4), (C2×C12).29Q8, C8.4(C2×Dic3), C12.305(C2×D4), (C2×C4).150D12, (C2×C12).169D4, C4.7(C4⋊Dic3), C24.C413C2, (C2×C4).17Dic6, (C22×C6).17Q8, (C2×C24).62C22, (C22×C4).151D6, (C6×M4(2)).2C2, (C3×M4(2)).1C4, (C2×M4(2)).2S3, C22.9(C2×Dic6), C33(M4(2).C4), C12.174(C22×C4), (C2×C12).796C23, C22.7(C4⋊Dic3), C4.28(C22×Dic3), C4.Dic3.36C22, (C22×C12).184C22, C6.53(C2×C4⋊C4), (C2×C6).41(C2×Q8), (C2×C6).17(C4⋊C4), C2.15(C2×C4⋊Dic3), (C2×C12).104(C2×C4), (C2×C4).22(C2×Dic3), (C2×C4).721(C22×S3), (C2×C4.Dic3).25C2, SmallGroup(192,684)

Series: Derived Chief Lower central Upper central

C1C12 — C23.9Dic6
C1C3C6C12C2×C12C4.Dic3C2×C4.Dic3 — C23.9Dic6
C3C6C12 — C23.9Dic6
C1C4C22×C4C2×M4(2)

Generators and relations for C23.9Dic6
 G = < a,b,c,d,e | a2=b2=c2=1, d12=c, e2=bd6, ab=ba, dad-1=ac=ca, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d11 >

Subgroups: 184 in 102 conjugacy classes, 67 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C8, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C3⋊C8, C24, C2×C12, C2×C12, C22×C6, C8.C4, C2×M4(2), C2×M4(2), C2×C3⋊C8, C4.Dic3, C4.Dic3, C2×C24, C3×M4(2), C22×C12, M4(2).C4, C24.C4, C2×C4.Dic3, C6×M4(2), C23.9Dic6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, C23, Dic3, D6, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, D12, C2×Dic3, C22×S3, C2×C4⋊C4, C4⋊Dic3, C2×Dic6, C2×D12, C22×Dic3, M4(2).C4, C2×C4⋊Dic3, C23.9Dic6

Smallest permutation representation of C23.9Dic6
On 48 points
Generators in S48
(2 14)(4 16)(6 18)(8 20)(10 22)(12 24)(26 38)(28 40)(30 42)(32 44)(34 46)(36 48)
(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 31 7 25 13 43 19 37)(2 42 8 36 14 30 20 48)(3 29 9 47 15 41 21 35)(4 40 10 34 16 28 22 46)(5 27 11 45 17 39 23 33)(6 38 12 32 18 26 24 44)

G:=sub<Sym(48)| (2,14)(4,16)(6,18)(8,20)(10,22)(12,24)(26,38)(28,40)(30,42)(32,44)(34,46)(36,48), (25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,31,7,25,13,43,19,37)(2,42,8,36,14,30,20,48)(3,29,9,47,15,41,21,35)(4,40,10,34,16,28,22,46)(5,27,11,45,17,39,23,33)(6,38,12,32,18,26,24,44)>;

G:=Group( (2,14)(4,16)(6,18)(8,20)(10,22)(12,24)(26,38)(28,40)(30,42)(32,44)(34,46)(36,48), (25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,31,7,25,13,43,19,37)(2,42,8,36,14,30,20,48)(3,29,9,47,15,41,21,35)(4,40,10,34,16,28,22,46)(5,27,11,45,17,39,23,33)(6,38,12,32,18,26,24,44) );

G=PermutationGroup([[(2,14),(4,16),(6,18),(8,20),(10,22),(12,24),(26,38),(28,40),(30,42),(32,44),(34,46),(36,48)], [(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,31,7,25,13,43,19,37),(2,42,8,36,14,30,20,48),(3,29,9,47,15,41,21,35),(4,40,10,34,16,28,22,46),(5,27,11,45,17,39,23,33),(6,38,12,32,18,26,24,44)]])

42 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C6D6E8A8B8C8D8E···8L12A12B12C12D12E12F24A···24H
order122223444446666688888···812121212121224···24
size1122221122222244444412···122222444···4

42 irreducible representations

dim11111222222222244
type++++++--+-+-+-
imageC1C2C2C2C4S3D4Q8Q8D6Dic3D6Dic6D12Dic6M4(2).C4C23.9Dic6
kernelC23.9Dic6C24.C4C2×C4.Dic3C6×M4(2)C3×M4(2)C2×M4(2)C2×C12C2×C12C22×C6C2×C8M4(2)C22×C4C2×C4C2×C4C23C3C1
# reps14218121124124224

Matrix representation of C23.9Dic6 in GL6(𝔽73)

7200000
0720000
001000
00727200
000010
00720072
,
7200000
0720000
001000
000100
0010720
00720072
,
100000
010000
0072000
0007200
0000720
0000072
,
7210000
7200000
00727100
0060100
001372027
0011720
,
27460000
0460000
0010710
000011
00140720
00594610

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,72,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,1,72,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,60,13,1,0,0,71,1,72,1,0,0,0,0,0,72,0,0,0,0,27,0],[27,0,0,0,0,0,46,46,0,0,0,0,0,0,1,0,14,59,0,0,0,0,0,46,0,0,71,1,72,1,0,0,0,1,0,0] >;

C23.9Dic6 in GAP, Magma, Sage, TeX

C_2^3._9{\rm Dic}_6
% in TeX

G:=Group("C2^3.9Dic6");
// GroupNames label

G:=SmallGroup(192,684);
// by ID

G=gap.SmallGroup(192,684);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,422,387,100,136,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^12=c,e^2=b*d^6,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^11>;
// generators/relations

׿
×
𝔽